
Simple Programming http://www.fayewilliams.com

The 10 Minute Guide to Object Oriented
Programming

Why read this?

Because the main concepts of object oriented programming (or OOP), often crop up in
interviews, and all programmers should be able to rattle them of and feel comfortable
talking about them.

If you come from a low-level, or even machine-level programming background, it’s still A
Good Thing to know what this object oriented lark is all about.

OOP deals with objects

Unfortunately there is no standard defnition of “object oriented programming” that
everyone agrees on, aside from the fact that it uses objects, which is possibly one of the
reasons why so many people who use it day-in and day-out have trouble defning or
explaining what they are actually doing.

OOP requires a particular way of thinking. Instead of planning out a sequence of
instructions in your program, you need to think about what you might want it to do, break
it up into useful objects, and then allow those objects to interact with each other. There is
no set order or route through the code (although all paths should be testable, but that’s a
diferent subject entirely!).

An analogy I often use is to imagine a room full of people talking to each other. Each
person is an object, and each object reacts to what other objects around them are saying.

How is OOP implemented?

An object is a concept that is supported by an OOP language, such as Java or C++. Each
language varies slightly in it’s approach, but the basic idea is that the language provides
you with a way to defne an object that you want to use, and then you can generate as
many, or few, of those objects as you need.

In C++, you create (or instantiate) objects by declaring a class. A class acts as a template
for your object creation. A class contains methods that dictate how the object can be used
and how it will respond to stimuli.

Last revision: 26 October 2011

http://www.fayewilliams.com/

Simple Programming http://www.fayewilliams.com

The main principles of OOP

This is a subject open to debate, but there are essentially 3 core principles of OOP, which
rather memorably spell out the word PIE:

1. Polymorphism

The hardest one to defne.

Polymorphism describes the ability of diferent objects to be accessed by a common
interface.

If that makes no sense, don’t worry, I’ll be covering this below, and providing a simple
example, so when someone asks you in an interview, “Can you explain polymorphism to
me?” you will never be at a loss for words again.

2. Inheritance

Inheritance describes the ability of objects to derive behaviour patterns from other
objects.

This is an amazing concept which opens up the ground for easily creating interfaces/APIs,
and reducing the duplication of code in your program. I’ll take a closer look at this shortly.

3. Encapsulation

Encapsulation describes the ability of objects to maintain their internal workings
independently from the program they are used in.

This basically means that you defne object-related behaviour inside your object, and it
therefore becomes self-reliant – you don’t need to have supporting code in place for your
object to work correctly. Again, I will cover this in more detail very soon.

So there you have it. The three cornerstones of OOP, and a nice handy defnition of each.

Now let's look at each one in more detail.

Last revision: 26 October 2011

http://www.fayewilliams.com/

Simple Programming http://www.fayewilliams.com

Polymorphism
I was once asked in an interview, “Can you tell me what polymorphism is?”

A straightforward enough question. Or is it? This can be exactly the kind of question that
catches you of guard. You’ve used objects for years and of course you know what
polymorphism is. But can you summarize it concisely? Let's lay it all out clearly, so the
next time someone asks, you can say, “Yes, let me explain it to you.”

The word

The word is greek in origin and translates literally to ‘many’ + ‘forms’.

In programming

Polymorphism is a descriptive term used in sciences such as biology and chemistry, but it
has also been adopted by the object oriented programming methodology.

In a single sentence, polymorphism describes the ability of diferent objects to be
accessed by a common interface.

What does that mean though?

At its most basic, an object is polymorphic if it is related to one or more other objects that
can ALL be utilized using the same methods.

To illustrate this with a trivial (and very non-scientifc) example, consider the following.

In a room stands a mouse, a cat and a dog. From the far corner of the room, a speaker
emits the sudden sound of a balloon popping. The mouse, the cat and the dog all
immediately turn toward the direction of the sound. The dog barks, the cat twitches its tail
and the mouse snifs the air.

Programmatically, we can summarize this bizarre scenario as follows:

The mouse, cat and dog are 3 unique objects. They are not the same, but they have some
characteristics that are the same. Together, they descend from a more generic superclass,
which we will call a mammal. Mammals have ears, which allow them to process sound. The
sound of the balloon popping causes each ‘object’ to process the sound in its own way:
barking, tail-twitching and snifng.

These ‘objects’ are polymorphic. Why?

Because although they all behave in diferent ways, the same 'method' (ears) can be used
to interact with them, and that method derives from a superclass (all mammals have ears).
And thus here is the crux of the whole thing:

You don’t need to know which object you are talking to in order to utilize the method to
talk to it.

Polymorphism allows you to talk to an object, without knowing exactly what the object is.
If an object is polymorphic, it could be one of many diferent forms defned by you, the
programmer, and descended from a generic base class. All you need to know is what
generic type you are talking to and the available methods to talk to it.

Once you’ve called upon the method, the polymorphic type of the object will determine
exactly how it behaves in response.

Last revision: 26 October 2011

http://www.fayewilliams.com/

Simple Programming http://www.fayewilliams.com

Polymorphism Example in C++

I’ve written up the example above in C++ code, so you can see it here with the actual nuts
and bolts of declaring and using objects polymorphically.

I’ve kept the code in header fles only for brevity, but as you well know, in the real world,
objects would be split out into .h and .cpp fles. The program consists of the main.cpp fle,
a base class called Mammal, and three derived classes called Dog, Cat and Mouse.

1. main.cpp

This is where it all comes together and you see polymorphism in action. I’ve declared an
array of pointers to the Mammal base class, and for each one have called the
SendLoudNoise() method.

The output of the program should look like this:

Woof woof!
--- Twitch my tail ---
--- Sniff the air ---

Which means that although I am calling the method on the base class, it is the derived class
that is responding, as it overrides the SendLoudNoise() method in each case.

Here is the main.cpp fle:

#include <iostream>
#include "Mammal.h"
#include "Dog.h"
#include "Cat.h"
#include "Mouse.h"

const int cNumAnimals = 3;

int main()
{
 Mammal* pAnimal[cNumAnimals] = { new Dog, new Cat, new
Mouse };

 for (int i = 0 ; i < cNumAnimals ; ++i)
 {
 std::cout << pAnimal[i]->SendLoudNoise() << std::endl;
 delete pAnimal[i];
 }

 return 0;
}

Last revision: 26 October 2011

http://www.fayewilliams.com/

Simple Programming http://www.fayewilliams.com

2. Mammal.h

The Mammal class, our base class, defnes the virtual method SendLoudNoise(), but we
never see the text that this method outputs. This proves that our polymorphism example
is working correctly.

Note that methods you want to override must be declared as virtual. If you remove this
one keyword, the output of the program would be 3 lines of “I am a generic mammal”!

#include <string>

#ifndef MAMMAL_H_
#define MAMMAL_H_

class Mammal {
public:
 Mammal() {};
 virtual ~Mammal() {};

 virtual std::string SendLoudNoise()
 {
 std::string str("I am a generic mammal");
 return str;
 }
};

#endif /* MAMMAL_H_ */

Last revision: 26 October 2011

http://www.fayewilliams.com/

Simple Programming http://www.fayewilliams.com

3. Dog.h

The next three fles are very similar. Each one inherits from the Mammal class and then
overrides the SendLoudNoise() method. Aside from that, they are almost identical.

You don’t have to override a method in a derived class. If you wanted default behaviour,
you could specify that in your base class and not mention it in your derived class. Then
when that method is called, the object would default to using the base class version.

#include "Mammal.h"

#ifndef DOG_H_
#define DOG_H_

class Dog : public Mammal {
public:
 Dog() {};
 virtual ~Dog() {};

 std::string SendLoudNoise()
 {
 std::string str("Woof woof!");
 return str;
 }
};

#endif /* DOG_H_ */

4. Cat.h

#include "Mammal.h"

#ifndef CAT_H_
#define CAT_H_

class Cat : public Mammal {
public:
 Cat() {};
 virtual ~Cat() {};

 std::string SendLoudNoise()
 {
 std::string str("--- Twitch my tail ---");
 return str;
 }
};

#endif /* CAT_H_ */

Last revision: 26 October 2011

http://www.fayewilliams.com/

Simple Programming http://www.fayewilliams.com

5. Mouse.h

#include "Mammal.h"

#ifndef MOUSE_H_
#define MOUSE_H_

class Mouse : public Mammal {
public:
 Mouse() {};
 virtual ~Mouse() {};

 std::string SendLoudNoise()
 {
 std::string str("--- Sniff the air ---");
 return str;
 }
};

#endif /* MOUSE_H_ */

And that’s all there is to it – a very basic example of using polymorphism to enable
interaction with diferent objects via a base class pointer.

Last revision: 26 October 2011

http://www.fayewilliams.com/

Simple Programming http://www.fayewilliams.com

Inheritance

Earlier in this guide, I described inheritance as the ability of objects to derive behaviour
patterns from other objects. But what does this mean in practice?

An object can inherit behaviour (in the form of methods), and even data variables, from a
parent class, in much the same way as children inherit characteristics from their parents.

Why is this something that we might want to do in programming?

Inheritance accurately models relationships

Using inheritance can make a program easier to understand. The concept that an object
derives from another object is quite intuitive. As long as you are deriving correctly,
inheritance can help break a complex model down into workable objects.

You are deriving correctly when your inherited object IS A base class object. E.g. a glider
IS A plane; a dog IS A mammal. If you can’t say this, you should be questioning if
inheritance is the correct approach.

Inheritance allows us to create polymorphic objects

By declaring methods as virtual, you have the option of overriding them in derived classes.
This is how polymorphism is achieved.

Inheritance allows us to create interfaces

By declaring methods as pure virtual, you can create an abstract base class (ABC) that
cannot be instantiated (i.e. it can’t exist as an object in its own right). Consequently you
end up with a class that defnes a set of methods, but has no implementation of those
methods – i.e. a lovely interface.

It is worth noting that the IS A relationship doesn't have to hold when you are creating an
interface, since the interface cannot be instantiated itself.

Inheritance isn’t a solution for reducing/reusing code

Inheritance can reduce the amount of code that needs to be written, but this isn’t why it
exists. It’s important to remember this. If you fnd you are using inheritance to promote
code-reuse, then you need to look carefully at whether the relationship between derived
class and parent class is still correct.

Multiple inheritance

Multiple inheritance is the process of deriving a class from two or more base classes.

Eek! Why would anyone want to do that? Well, sometimes you need the functionality of two
classes combined into one – for example, you may be working with a library and fnd that
a class you have already derived from your own base class also needs to derive from one
of the base classes provided in the library. Essentially, if you stick to deriving from
abstract base classes, multiple inheritance shouldn’t cause you too much pain.

Last revision: 26 October 2011

http://www.fayewilliams.com/

Simple Programming http://www.fayewilliams.com

I’ve worked in places that support opposite ends of the opinion spectrum on this topic.
One company unanimously insisted that multiple inheritance was the work of the devil.
Another company used multiple inheritance like it was going out of fashion.

Having seen its usefulness in live code, but also having been subjected to endless
warnings of its dangers, I tend to take a more moderate view. Yes, there is a place for
multiple inheritance, but you should be clear about why you need it.

There is no concrete way of deciding if multiple inheritance is the right solution to a
particular problem, but if it seems like a simple and elegant way to solve an otherwise
tricky issue, then it might just be the right thing to use.

This guide only discusses public inheritance, not private or protected.

Encapsulation

I defned this above as the ability of objects to maintain their internal workings
independently from the program they are used in.

This is actually the simplest of the three concepts we’ve covered. With respect to C++,
encapsulation describes the use of a class to contain both its relevant data, and the
methods to manipulate its own data.

In practice

As a simple example, you might defne a class called Message. This class can contain
various data members, such as the sender's address, the date the message was written,
the destination address, and of course, the actual message inside.

The class can also contain methods to manipulate a Message object. For example it might
have a method to set the object status to ‘read’, and another method to print the message
to the screen.

The fact that the Message class both contains its own data, and provides a way to interact
with that data, is what encapsulation is all about.

It’s such a fundamental part of C++ (and other OO languages), that it is often taken for
granted.

Why is encapsulation a good thing?

The benefts of encapsulation are:

• It can restrict access to an object’s data.

If data is declared as private and methods are generated to access that data, it can provide
a good level of control over the data and how it is used.

• It allows the programmer to modify the object under-the-hood without disrupting
the rest of the program.

If you want to change the internals of your class, you can do so without having to modify
code elsewhere in the program, as long as you keep the methods to access that class the
same.

Last revision: 26 October 2011

http://www.fayewilliams.com/

Simple Programming http://www.fayewilliams.com

Encapsulation is the class not the object

Note that encapsulation is provided by the class, not the instantiated object (there is a
subtle diference). This is because a class can provide the ability to access information
about every object that is instantiated from it, whereas a single object is just that.

Conclusion
That wraps up my 10 minute guide to object oriented programming; I hope you found it
useful.

Remember the 3 cornerstones (PIE), and what each of them mean, and you are well on
your way to creating better programs by using classes and objects in the way in which
they were designed. Have fun!

Last revision: 26 October 2011

http://www.fayewilliams.com/

	OOP deals with objects
	How is OOP implemented?
	The main principles of OOP
	1. Polymorphism
	2. Inheritance
	3. Encapsulation
	Polymorphism

	The word
	In programming
	What does that mean though?
	
Polymorphism Example in C++
	1. main.cpp
	
2. Mammal.h
	3. Dog.h
	4. Cat.h
	
5. Mouse.h
	Inheritance

	Inheritance accurately models relationships
	Inheritance allows us to create polymorphic objects
	Inheritance allows us to create interfaces
	Inheritance isn’t a solution for reducing/reusing code
	Multiple inheritance
	Encapsulation

	In practice
	Why is encapsulation a good thing?
	Encapsulation is the class not the object

