
Simple Programming www.fayewilliams.com

!

!

The 10 Minute Guide to
Bitwise Operators

 (Cause you've got 10 minutes until your interview starts
and you know you should probably know this, right?)

!
!
Twitter: @FayeWilliams

Web: www.fayewilliams.com

  
Revised: February 2014 © Copyright 2014

SIMPLE PROGRAMMING

http://www.fayewilliams.com

Simple Programming www.fayewilliams.com

!
Bitwise Operators

!
 If you are lucky enough to work on low-level, embedded
systems (like me!), then eventually, someday, you will probably
have to make sense of bitwise manipulation, and when that day
comes, you will just LOVE this guide, because it makes them
super easy to understand.

And even if you think you won’t use them, well, you could read
this guide anyway, because you never know when a pub quiz is
gonna ask about exclusive OR, and like the scouts, it's good to
be prepared.

!
Let’s get started
The bitwise operators enable you to work at a very fine-grained
level, which is advantageous when you are dealing with limited
space, or sending messages with limited capacity.

!
What the hell does that mean?
Ah, sorry about the textbook spiel there, let's start again.

!
Bitwise operators allow us to work at a sub-byte level. You
know what a byte is – computer memory is made up of lots of
them. Well, a byte itself is divided up into 8 bits.

!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
Each one of these teeny, tiny bits has one of two states. It is
either ON or OFF.

!
Usually, in computing, a zero represents OFF and a 1
represents ON. No, I don't know why I'm using capitals either.

!
A bit is the smallest piece of storage or data that a computer
can utilise. You can't do anything with less than a bit.

!
Now, it turns out that you can’t directly access these bits, but
they are readable and writeable - if you know how to use the
bitwise operators.

!
All clear so far?

Great.

!
In order to read and write individual bit values, C provides us
with four operators:

!
& Bitwise AND

| Bitwise OR (inclusive OR)

^ Bitwise XOR (exclusive OR)

~ Bitwise NOT (or “one's complement”)

!
!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
What about bit shifting?
Yes, smarty-pants, there are also two bit-shift operators:

!
<< and >>

!
However, these don't operate on individual bits, they merely
move all the bits left or right.

!
If you want to know more, there’s a post on my website that
provides a practical example of bit shifting. I won’t be covering
it here.

!
Binary numbers
I use binary numbers to illustrate the concepts in this guide. If
you need a reminder on how they work, there’s a short and
sweet explanation here.

!
OK. Enough intro. Let’s have a look at each of the bitwise
operators in turn. We’ll see how they work and talk through an
example or two of what on earth you would use them for in
‘real life’.

!
!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
Bitwise AND: &

!
Bitwise AND is represented by the ‘&’ symbol (ampersand).

!
Example:
128 & 10 = 0

!
What is this actually doing?
Bitwise AND compares each bit setting and if they match, sets
the corresponding output bit to 1. So using the example
above, we can visualise the actual bit comparisons as follows:

!
 10000000 // 128  
 & 00001010 // 10  

 00000000 // 0

!
What we're doing here is comparing the top bit and the
bottom bit. If they are the same, the output is 1. If they are
different the output is 0.

Crazy? Unintuitive? Glorious?

!
Yes, all of the above.

!
Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
What would I use bitwise AND for?
Good question.

!
The above example seems totally abstract, and quite clearly
would make you wonder what use this would ever actually
have.

!
To help cement the concepts in your mind I'm going to provide
examples that will allow you to see the beauty of these special
operators. Seeing them in use will also help you understand
their value programmatically.

!
1. Obtain the value of a bit
Let’s say I am using a byte to hold the true/false status of 8
items. I want to know if item 5 is true (i.e. set to 1).

!
Now, you can't read bits individually - have I said that already?

!
You can read the contents of a byte, but you can't access
individual bits without using the operators.

!
So, since I can't use something like byte[4] to access the 5th
element, instead I'll AND my byte with the appropriate mask
and test the result.

!
Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
Whoa. Mask? What mask?
A mask is just a byte that is set to a fixed value. Since you know
which bits are set in your mask, you can use it to check the
status of an unknown byte.

!
When you AND two bytes together, the value of the mask is
returned if the relevant bits match.

!
In this case, my mask is decimal 16 (or, 00010000). See how
(reading right to left), I have the bit set to 1 at position 5? This
is the value I am checking for:

!
 01101011 // 107  
 & 00010000 // 16 (Mask)

 00000000 // 0

!
The result is zero, because bit 5 is not set.
Let’s check a different byte:

!
 01111011 // 123

 & 00010000 // 16 (Mask)

 00010000 // 16

!
Now the result is 16, because bit 5 is set.

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
2. Turn off an individual bit
You can also use AND in 'reverse', and turn off selected bits
using a fixed mask.

!
Let’s say that I want to turn off bit 5. I can do this with the mask
239 (11101111). The result is the original input, but with bit 5
switched off:

!
 01111011 // 123

 & 11101111 // 23 (Mask)  

 01101011 // 107

!
Can you see what’s happened here?

The bitwise AND comparison checks each bit and sets the
result to 1 if they match.

Therefore, if I want to turn off bit 5, all I need to do is set my
mask to contain zero at this position. That way, bit 5 will never
be set to 1 in the result.

Setting everything else to 1 in the mask ensures that all other
bits remain unchanged.

!
Note that you can’t turn a bit on with the AND operator, since
you must have two values of 1 to get the output of 1 (but see
bitwise OR for this).

!
Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
Bitwise OR: |

!
Bitwise OR is represented by the ‘|’ symbol (pipe).

!
Example:
130 | 10 = 138

!
What is this actually doing?
Bitwise OR compares each bit setting and if either one is set,
sets the corresponding output bit to 1. So in the example
above, we can see the actual bit comparisons as follows:

!
 10000010 // 130  
 | 00001010 // 10  

 10001010 // 138

!
Note that it doesn’t matter if one or both bits are set in what
we are comparing. As long as either one is set, the output bit is
set to 1. This is what makes it inclusive.

!
What would I use bitwise OR for?
An example follows – it’s much easier to understand the
usefulness of these operators when you see them in action.

!
Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
1. Turn on an individual bit
Remember we used bitwise AND to turn off an individual bit?
Well bitwise OR allows you to do the opposite.

!
Let’s say we have a byte, containing 8 bits, which are used as
true/false values. Without changing the settings of any of the
other bits, we want to set the first bit to be true. We apply the
mask 1 (decimal) as follows:

!
 11000100 // 196  
 | 00000001 // 1 (Mask)  

 11000101 // 197

!
The result is that the first bit (that is, the right-most bit) is now
set to 1, and the other bit settings remain unchanged.

!
That’s all there is to it!

!
!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
Bitwise XOR: ^

!
Bitwise XOR is represented by the ‘^’ symbol (caret or ‘hat’).

!
Example:
130 ^ 10 = 136

!
What is this actually doing?
Bitwise XOR is an exclusive OR operation – it compares each
bit setting and if either one is set, sets the corresponding
output bit to 1. However, if both bits are set, then the
corresponding output bit is set to zero.

!
So to clarify, both OR and XOR compare each bit setting and if
either one is set, sets the corresponding output bit to 1.
However, if both bits are set, OR sets the output to 1
(inclusive), while XOR sets the output to zero (exclusive).

!
In short, XOR gives a result of 1 only if the two inputs are
different.

!
!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
So the example above has bit comparisons as follows:

!
 10000010 // 130  
 ^ 00001010 // 10  

 10001000 // 136

!
What would I use bitwise XOR for?
Let’s take a look at how we might use XOR.

!
1. Toggle bits
XOR is primarily used to toggle bits on and off. Let’s say we
have a byte which represents 8 boolean values and we want to
turn the first two off and on again.

!
We can use the same mask to toggle the bits we are interested
in:

!
 10000111 // 135  
 ^ 00000011 // 3 (Mask)  

 10000100 // 132

!
Applying the mask turns off the last two bits.

!
!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
!
 10000100 // 132  
 ^ 00000011 // 3 (Mask)

 10000111 // 135

!
Applying it again (to the result from above) turns the bits back
on.

!
All the other bits remain unchanged. XOR is just like applying a
switch – very useful in low level programming.

!
!
!
!
!
!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
Bitwise NOT ~

!
Bitwise NOT is represented by the ‘~’ symbol (tilde).

!
Example:
~125 = 130

!
Bitwise NOT only takes one operand. This means that it is a
unary operator.

!
What is this actually doing?
Bitwise NOT essentially ‘flips’ (i.e. changes) the bit setting for
each and every bit, resulting in what is known as the one’s
complement of the original number.

!
So the example above has a bit output as follows:

!
 ~ 01111101 // 125  

 10000010 // 130

!
!
!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
What would I use bitwise NOT for?

!
1. Turn off an individual bit
Actually, the NOT operator doesn’t itself turn off a bit, but in
conjunction with the AND operator, you can use it with a mask
to turn off a bit in a nice readable manner.

!
This is best illustrated with a full example:

!
char settings = 0; // 00000000

char FLAG1 = 1; // 00000001

!
Let’s assume that settings is a byte we use to represent 8
boolean values. First of all, we’ll set the first bit of our settings
variable to 1 using the OR operator and our FLAG1 mask:

!
settings = settings | FLAG1;

!
In binary this is:

!
 00000000 // 0 (settings)  
 | 00000001 // 1 (FLAG1)  

 00000001 // 1 (settings)

!
!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
Now, if we want to turn that bit off again, instead of using AND
and defining a new mask (11111110), we can use our existing
FLAG1 mask and the NOT operator as follows:

!
settings = settings & ~FLAG1;

!
This reads quite intuitively: settings AND NOT FLAG1 turns off
the first bit in settings. In binary:

!
 00000001 // 1 (settings)  
 & 11111110 // 254 (one’s complement of

 ________ FLAG1)

 00000000 // 0 (settings - back to our

 original number)

!
Note that applying the NOT operator to the flag generates the
same binary sequence we would need to define as a new mask
if we wanted to use AND alone (11111110).

!
The NOT operator saves us a variable (important where you
have space constraints).

!
Can’t I just use XOR to turn this bit on and off?
Well spotted, yes you can!

!
!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
//turn first bit on or off

settings = settings ^ FLAG1;

!
The difference with XOR is:

!
1. You may not know if you are turning the bit on or off

without checking the result (or input) as it’s just a switch
(which means more instructions)

2. XOR always has an effect, whether you intend it to or not.

!
With & ^ (AND NOT) you know you are explicitly turning a bit
off, and if the bit is already off when you apply the mask,
the result is unchanged.

!
Awesome eh?

!

Revised: February 2014 © Copyright 2014

Simple Programming www.fayewilliams.com

!
Bitwise operator quick start guide

!
In summary, which operator to use when.

!
!

!
& Bitwise AND
 • Use with a mask to check if bits are on or off

 • Turn off individual bits

| Bitwise OR
 • Turn on individual bits

^ Bitwise XOR
 • Toggle bits on and off, like a switch

~ Bitwise NOT
 • Turn off individual bits with AND

Revised: February 2014 © Copyright 2014

